If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-480=0
a = 2; b = 4; c = -480;
Δ = b2-4ac
Δ = 42-4·2·(-480)
Δ = 3856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3856}=\sqrt{16*241}=\sqrt{16}*\sqrt{241}=4\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{241}}{2*2}=\frac{-4-4\sqrt{241}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{241}}{2*2}=\frac{-4+4\sqrt{241}}{4} $
| 2/3x-5=6-1/4x | | 3x^2=22.5 | | 6c=$42.60 | | -8x+5(x-5)=-10 | | -7w-(-3)=31 | | 9=2v+3v= | | 35-7x=-x(x+5) | | a-4=3+a-7 | | 1.5=0.3+4r | | 4(n+3)+12+n=3(n-2)+6 | | -7w–(-3)=31 | | 4x+12-2x=2x+7 | | 6=5(v+2)-7v | | 62/3i-3=8 | | 25-5a=-5(a-5) | | -7.8x+12.6=3.4 | | -4o+2=7 | | 2r+r-1=43 | | 3.4x=-5.44 | | (6x+4)=100 | | 8=h+5/6 | | 20=-16x20^2+0 | | 2x-56=4x/5 | | -3m/7=21 | | -20=(1/3)x+8 | | 3r-1=43 | | 2(x+7=2x+14 | | 1/4x-8=4+x | | 2/3(3x-12)+2x=-6 | | n²—3n+10=0 | | 3×10=10+5s | | X•y=41 |